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Abstract

Michelson interferometers allow phase measurements many orders of magnitude below

the phase stability of the laser light injected into their two almost equal-length arms.

If, however, the two arms are unequal, the laser fluctuations can not be removed by

simply recombining the two beams. This is because the laser jitters experience different

time delays in the two arms, and therefore can not cancel at the photo detector. We

present here a method for achieving exact laser noise cancellation, even in an unequal-

arm interferometer. The method presented in this paper requires a separate readout of

the relative phase in each arm, made by interfering the returning beam in each arm

with a fraction of the outgoing beam [1]. By linearly combining the two data sets with

themselves, after they have been properly time shifted [2], we show that it is possible to

construct a new data set that is free of laser fluctuations.

An application of this technique to future planned space-based laser interferometer de-

tectors of gravitational radiation [3] is discussed.

INTRODUCTION

Michelson interferometers, experimental devices used in a large variety of Earth and space-

based, high-precision experiments, rely on a coherent train of electromagnetic waves of nom-

inal frequency v0. The injected beam is typically folded into several beams, and at one or

more points where these intersect, relative fluctuations of frequency or phase are monitored

(homodyne detection). The observed low frequency variations of the fringes are due to fre-

quency fluctuations of the source of the electromagnetic signal about t/0, to relative motions
of the source and the mirrors that do the folding, to temporal variations of the index of

refraction along the beams, and to any time-variable field present the experimenter is try-

ing to measure. To perform an experiment in this way it is thus necessary to control, or

monitor, the other sources of relative frequency fluctuations, and, in the data analysis, to

use optimal algorithms based on the different characteristic interferometer responses to the

signal, and to the other sources (the noise). By comparing phases of split beams propagated

along equal-length arms, frequency fluctuations of the laser can be removed and signals at

levels many orders of magnitude lower can be measured.



A space-basedexperiment for detecting gravitational radiation, using Michelson interfer-

ometry, has been proposed [31. Since the frequency stability of the lasers it will use will be

at best of a few parts in 10 -13 in the millihertz frequency band, it will be essential for this

experiment to be able to remove these fluctuations when searching for gravitational waves of

dimensionless amplitudes less than 10 -2o in the millihertz band[3l. Since the armlengths of

this space-based interferometer can be different by several percent, the direct recombination

of the two beams at a photo detector will not effectively remove the laser noise. This is

because the frequency fluctuations of the laser will be delayed by a different amount of time

inside the two different-length arms.

In order to solve this problem, a technique involving heterodyne interferometry with un-

equal arm lengths and independent phase-difference readouts in each arm has been identified

[21, which yields data from which source frequency fluctuations can be removed exactly. This

is achieved by taking a suitable linear combination of the two Doppler time series after hav-

ing time shifted them properly. This direct method achieves the exact cancellation of the

laser frequency fluctuations. An outline of the paper is presented below.

In Sec. II we state the problem, and derive the two Doppler responses, from the two

unequal arms of a space-based interferometer, to a gravitational wave signal. The difference

between the armlengths implies that the frequency fluctuations of the laser can not be

removed by direct differencing of the two data sets. In Sec. III we present our technique for

s_/nthesizin# an unequal-arm interferometer detector of gravitational waves. Our method is

implemented in the time domain, and relies on a properly chosen linear combination of the

two Doppler data. Our comments and conclusions are finally outlined in Sec. IV.

STATEMENT ,OF THE PROBLEM

Let us consider three spacecraft flying in an equilateral triangle-like formation, each acting

as a free falling test particle, and continuously tracking each other via coherent laser light.

One spacecraft, which we will refer to as spacecraft a, transmits a laser beam of nominal

frequency v0 to the other spacecraft (spacecraft b and c at distances LI and L2, respectively).

The phase of the light received at spacecraft b and c is used by lasers on board spacecraft b

and c for coherent transmission back to spacecraft a. The relative two two-way frequency (or

phase) changes as functions of time are then independently measured at two photo detectors

on board spacecraft a (Figure 1). When a gravitational wave crossing the solar system

propagates through these electromagnetic links, it causes small perturbations in frequency

(or phase), which are replicated three times in each arm's data [41.

To determine the response of an unequal arm interferometer to a gravitational wave pulse,

let us introduce a set of Cartesian orthogonal coordinates (X, Y, Z) centered on spacecraft a

(see Figure 2). The X axis is assumed to be oriented along the bisector of the angle enclosed

between the two arms, Y is orthogonal to it in the plane containing the three spacecraft, and



the Z axis is chosen in such a way to form with (X, Y) a right-handed, orthogonal triad of

axes. In this coordinate system we can write the two two-way Doppler responses, measured

by spacecraft a at time t, as follows Is'S] (units in which the speed of light c = 1).

- vl(t)= hl(t)+ c(t- 2Ll(t)) - C(t) + nl(t) , (1)
Vo /1

_(t)_ _V2(t)=h2(0+C(t_2L2(t)) - C(t) + n2(t) , (2)
vo /2

where hi(t), h2(t) are the gravitational wave signals in the two arms Is'6], and we have denoted

by C(t) the random process associated with the frequency fluctuations of the-master laser

on board spacecraft a; nt(t), n2(t) are the remaining noise sources affecting the Doppler

responses yl (t), y2 (t) respectively.

From equations (1, 2) it is important to note the characteristic time signature of the

random process C(t) in the Doppler responses yl, y2. The time signature of the noise C(t) in

yl (t) for instance, can be understood by observing that the frequency of the signal received at

time t contains laser frequency fluctuations transmitted 2Lt seconds earlier. By subtracting

from the frequency of the received signal the frequency of the signal transmitted at time t,

we also subtract the frequency fluctuations C(t) with the net result shown in equation (1).

Among all the noise sources included in equation (1), the frequency fluctuations due to

the laser are expected to be by far the largest. A space-qualified single-mode laser, such as

a diode-pumped Nd:YAG ring laser of frequency v0 = 3.0 x 1014 Hz and phase-locked to

a Fabry-Perot optical cavity, is expected to have a spectral level of frequency fluctuations

equal to about 1.0 x 10-ts/_ in the millihertz band [31. Laser noise is to be compared

with, e.g., the expected secondary noises which will be 10 r or more times smaller.

If the armlengths are unequal by an amount AL = L2 - Lt --- ¢L1 (with c = 3 x 10 -2 for

a space based interferometer[3]), the simple subtraction of the two Doppler data y1(t), y2(t)

(which would be appropriate for a conventional equal-arm interferometer) gives a new data

set that is still affected by the laser fluctuations by an amount equal to

C(t - 2Lt) - C(t - 2L2) _- 2C'(t - 2L1)¢Lx . (3)

As a numerical example of equation (3) we find that, at a frequency of 10 -s Hz and

by using a laser of frequency stability equal to about 10-t3/v/-H-_, the residual laser fre-

quency fluctuations are equal to about 10-t6/v/-_. Since the goal of proposed space-based

interferometersDl is to observe gravitational radiation at levels of 10-2°/v/-H-'_ or lower, it is

crucial for the success of these missions to cancel laser frequency fluctuations by many more

orders of magnitude.
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In what follows we will show that there exists an algorithm in the time domain for removing

the frequency fluctuations of the laser from the two Doppler data yt(t), y2(t) at any time

t. This method relies only on a properly chosen linear combination of the two Doppler data

in the time domain. In order to show how this technique works, we will assume the two

armlengths L1, L2 to be constant and known exactly. The interested reader is referred to [2]

for a detailed analysis covering the most general configuration.

From equations (1, 2) we may notice that, by taking the difference of the two Doppler

data yt(t), y2(t), the frequency fluctuations of the laser now enter into this new data set in

the following way

Al(t) -- y,(t) - y2(t) = hi(t) - h2(t) + C(t - 2L1) - C(t - 2L2)

+ n,(t) - n2(t). (4)

If we now compare how the laser frequency fluctuations enter into equation (4) against how-

they appear into equations (1, 2), we can further make the following observation. If we

time-shift the data yl(t) by the round trip light time in arm 2, yl(t - 252), and subtract

from it the data y2(t) after it has been time shifted by the round trip light time in arm 1,

y2(t - 251), we obtain the following data set

A2(t) - yl(t - 2L2) - y2(t- 2L1) = hl(t - 2L2) - h2(t - 2L1) + C(t- 2L1)

- C(t- 2L2) + nl(t- 2L2) - n2(t- 2L1). (5)

In other words, the laser frequency fluctuations enter into Al(t), and A2(t) with the same

time-structure. This implies that, by subtracting equation (4) from equation (5), we can

generate a new data set that does not contain the laser frequency fluctuations C(t)

Z(t) = i2(t) - Al(t) = h,(t - 2L2) - h,(t) - h2(t - 25,) + h_(t)

+ n,(t - 2L2) - nl(t) - n2(t - 2LI) + n2(t). (6)

From the expression of A2(t) given in equation (5), it is easy to see that the new data set

Z(t) should be set to zero for the initial MAX[2L1,252] seconds. This is because some of

the data from yt and y2 entering into A_(t) "do not yet exist" during this time interval. Since

the typical round trip light time for proposed space-based laser interferometer detectors of

gravitational waves will never be greater than about 33 seconds [3], we conclude that the

amount of data lost in the implementation of our method is negligible.

We have simulated the procedure (equation 6) using realistic laser and shot noise spectra [3],

known arm lengths (differing by about 3 percent), and a simulated monochromatic gravita-

tional wave incident normal to the plane of the interferometer. The results of the simulation

are shown in Figure 3. Plotted are spectral densities of the raw laser noise, the raw shot

noise, and the canceled time series, E(t) (equation 6). This illustrates cancellation of the

laser noise and modulation of the residual secondary noises [21.
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CONCLUSIONS

We presented a time-domain procedure for accurately cancelling laser noise fluctuations in an

unequal-arm one-bounce Michelson interferometer relevant to space-borne gravitational wave

detectors. The method involves separately measuring the phase of the returning light relative

to the phase of the transmitted light in each arm. By suitable offsetting and differencing of

these two time series, the common laser noise is cancelled exactly (equation 6).

The technique presented in this paper is rather general, in such that it can be implemented

with any (Earth as well as space-based) unequal-arms Michelson interferometers.
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